Economy of Carbon and Nitrogen in a Nodulated and Nonnodulated (NO(3)-grown) Legume.

نویسندگان

  • J S Pate
  • D B Layzell
  • C A Atkins
چکیده

Partitioning and utilization of assimilated C and N were compared in nonnodulated, NO(3)-fed and nodulated, N(2)-fed plants of white lupin (Lupinus albus L.). The NO(3) regime used (5 millimolar NO(3)) promoted closely similar rates of growth and N assimilation as in the symbiotic plants. Over 90% of the N absorbed by the NO(3)-fed plants was judged to be reduced in roots. Empirically based models of C and N flow demonstrated that patterns of incorporation of C and N into dry matter and exchange of C and N among plant parts were essentially similar in the two forms of nutrition. NO(3)-fed and N(2)-fed plants transported similar types and proportions of organic solutes in xylem and phloem. Withdrawal of NO(3) supply from NO(3)-fed plants led to substantial changes in assimilate partitioning, particularly in increased translocation of N from shoot to root. Nodulated plants showed a lower (57%) conversion of C or net photosynthate to dry matter than did NO(3)-fed plants (69%), and their stems were only half as effective as those of NO(3)-fed plants in xylem to phloem transfer of N supplied from the root. Below-ground parts of symbiotic plants consumed a larger share (58%) of the plants' net photosynthate than did NO(3)-fed roots (50%), thus reflecting a higher CO(2) loss per unit of N assimilated (10.2 milligrams C/milligram N) by the nodulated root than by the root of the NO(3)-fed plant (8.1 milligrams C/milligram N). Theoretical considerations indicated that the greater CO(2) output of the nodulated root involved a slightly greater expenditure for N(2) than for NO(3) assimilation, a small extra cost due to growth and maintenance of nodule tissue, and a considerably greater nonassimilatory component of respiration in root tissue of the symbiotic plant than in the root of the NO(3)-fed plant.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of nodulation on assimilate remobilization in soybean.

The objectives of this work were to determine the effect of nodulation on dry matter, reduced-N, and phosphorus accumulation and partitioning in above-ground vegetative parts and pods of field-grown soybean (Glycine max [L.] Merr. cv Harosoy).From comparison of nodulated and nonnodulated isolines, it was estimated that nodulated plants attained 81 and 71% of total-plant (above ground) N from up...

متن کامل

Nitrogen Nutrition and Xylem Transport of Nitrogen in Ureide-producing Grain Legumes.

Xylem sap composition was examined in nodulated and nonnodulated cowpea (Vigna unguiculata [L.] Walp.) plants receiving a range of levels of NO(3) and in eight other ureide-forming legumes utilizing NO(3) or N(2) as sole source of nitrogen. A (15)N dilution technique determined the proportions of plant nitrogen derived from N(2) in the nodulated cowpeas fed NO(3). Xylem sap composition of NO(3)...

متن کامل

Biochemical Basis for Partitioning of Photosynthetically Fixed Carbon between Starch and Sucrose in Soybean (Glycine max Merr.) Leaves.

The control of photosynthetic starch/sucrose formation in leaves of soybean (Glycine max L. Merr.) cultivars was studied in relation to stage of plant development, photosynthetic photoperiod, and nitrogen source. At each sampling, leaf tissue was analyzed for starch content, activities of sucrose-metabolizing enzymes, and labeling of starch and sucrose (by (14)CO(2) assimilation) in isolated ce...

متن کامل

Nodulated soybean enhances rhizosphere priming effects on soil organic matter decomposition more than non-nodulated soybean

The phenomenon that rhizosphere processes significantly control soil organic matter (SOM) decomposition, also termed rhizosphere priming effect (RPE), is now increasingly recognized as significant as the effects of soil temperature and moisture on SOM decomposition. However, the exact mechanisms responsible for RPE remain largely unknown. Particularly, some reports have suggested that the quali...

متن کامل

Glycine-Glomus-Rhizobium Symbiosis : VI. Photosynthesis in Nodulated, Mycorrhizal, or N- and P-Fertilized Soybean Plants.

Soybean (Glycine max [L.] Merr. cv Hobbit) plants were grown in a growth chamber for 56 days in a phosphorus- and nitrogen-deficient soil and were colonized by the vesicular-arbuscular mycorrhizal (VAM) fungus Glomus mosseae (Nicol. & Gerd) Gerd. and Trappe and Rhizobium japonicum strain USDA 136, or by either organism alone, or by neither. Non-VAM plants received supplemental phosphorus and no...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 64 6  شماره 

صفحات  -

تاریخ انتشار 1979